MedCalc

Logit transformation

The logit and inverse logit functions are defined as follows:

$$logit(p) = \ln \left ( \frac {p} {1-p} \right )$$ $$p = \frac {1} { 1 + e^{-logit(p)}}$$
plogit(p)plogit(p)plogit(p)plogit(p)
0.01-4.59510.26-1.04600.510.04000.761.1527
0.02-3.89180.27-0.99460.520.08000.771.2083
0.03-3.47610.28-0.94450.530.12010.781.2657
0.04-3.17810.29-0.89540.540.16030.791.3249
0.05-2.94440.30-0.84730.550.20070.801.3863
0.06-2.75150.31-0.80010.560.24120.811.4500
0.07-2.58670.32-0.75380.570.28190.821.5163
0.08-2.44230.33-0.70820.580.32280.831.5856
0.09-2.31360.34-0.66330.590.36400.841.6582
0.10-2.19720.35-0.61900.600.40550.851.7346
0.11-2.09070.36-0.57540.610.44730.861.8153
0.12-1.99240.37-0.53220.620.48950.871.9010
0.13-1.90100.38-0.48950.630.53220.881.9924
0.14-1.81530.39-0.44730.640.57540.892.0907
0.15-1.73460.40-0.40550.650.61900.902.1972
0.16-1.65820.41-0.36400.660.66330.912.3136
0.17-1.58560.42-0.32280.670.70820.922.4423
0.18-1.51630.43-0.28190.680.75380.932.5867
0.19-1.45000.44-0.24120.690.80010.942.7515
0.20-1.38630.45-0.20070.700.84730.952.9444
0.21-1.32490.46-0.16030.710.89540.963.1781
0.22-1.26570.47-0.12010.720.94450.973.4761
0.23-1.20830.48-0.08000.730.99460.983.8918
0.24-1.15270.49-0.04000.741.04600.994.5951
0.25-1.09860.500.00000.751.0986